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Guide to Proofs on Sets 
 
Richard Feynman, one of the greatest physicists of the twentieth century, gave a famous series 
of lectures on physics while a professor at Caltech. Those lectures have been recorded for pos-
terity and are legendary for their blend of intuitive and mathematical reasoning. One of my 
favorite quotes from these lectures comes early on, when Feynman talks about the atomic 
theory of matter. Here’s a relevant excerpt: 

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one 
sentence passed on to the next generations of creatures, what statement would con-
tain the most information in the fewest words? I believe it is the atomic hypothesis 
(or the atomic fact, or whatever you wish to call it) that all things are made of atoms 
[. ...] In that one sentence, you will see, there is an enormous amount of information 
about the world, if just a little imagination and thinking are applied. 

This idea argues for a serious shift in perspective about how to interpret properties of objects 
in the physical world. Think about how, for example, you might try to understand why steel is 
so much stronger and tougher than charcoal and iron. If you don’t have atomic theory, you’d 
probably think about what sorts of “inherent qualities” charcoal and iron each possess, and 
how those qualities interacting with one another would give rise to steel’s strength. That’s 
how you’d think about things if you were an alchemist. But with atomic theory, you could ask 
questions like “how are the atoms in a sample of steel arranged?,” “what happens to an assort-
ment of atoms in a metal when the metal bends or deforms?,” and “how would throwing some 
carbon atoms in the mix change that?” That’s how you’d think about things if you were a mod-
ern chemist or materials scientist. 

I would argue that if you have a single guiding principle for how to mathematically reason 
about sets, it would be this one: 

All sets are made of elements, and they’re completely defined by their elements. 

Think of this as the analog of atomic theory for sets. Although professional mathematicians 
don’t use this term, I like to call it the elemental theory of sets, since it emphasizes the core 
idea that sets are made of elements, and that understanding how sets behave really boils 
down to understanding how their elements behave. 

To formalize your intuition about sets and how they behave – and to build up better predic-
tions for how sets will interact with one another – you’ll want to shift your thinking from a 
holistic “A ∪ B represents the set you get when you combine everything from A and B to-
gether” to a more precise “x ∈ A ∪ B if and only if x ∈ A or x ∈ B.” That change in perspective – 
from the properties of the set as a whole to properties of the individual elements of those sets 
– will be a key theme throughout this course. It’s not necessarily the most natural perspective 
to adopt, but once you’ve learned to think about things this way you’ll get a much deeper un-
derstanding for how sets behave. 

The rest of this handout explores how to think about things this way, as well as how to use 
that perspective to write formal proofs. 
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A First Running Example 
In the upcoming sections, we’re going to see how to reason rigorously about sets and set the-
ory. Rather than doing that in the abstract, we’ll focus on a specific, concrete example. 

Consider the following theorem: 

Theorem: For any sets A, B, C, D, and E where A ⊆ B ∪ C, B ⊆ D, and C ⊆ E, we have A ⊆ D ∪ E. 

Although there are a ton of variables here, this result isn’t as scary as it might look. Before 
moving on, take a minute to think through what’s going on here. Draw some pictures. Try out 
some examples. Can you get a handle on what’s going on here? As with any mathematical 
proof, the first step is to try to get a handle on how all the pieces move. (Having trouble draw-
ing this? Ask about it on Piazza!) 

At this point you might have a sense for why this theorem is true. You might also have no 
intuition for what’s going on here. And that’s fine! Because what we’re going to do now is to 
see how we might tackle writing a proof. It might seem weird to approach writing a proof of 
a result when you still haven’t figured out how everything fits together. And that’s a good in-
tuition to have. However, in many cases, the act of sitting down and trying to figure out what 
the proof might look like might give you some clarity into what questions you should be trying 
to ask and where you should focus your efforts. 

To begin with, even though this theorem involves a bunch of variables all related in some 
weird ways, and even though you might not have an idea of where this proof is going to go, 
you can still at the very least set up the first sentence. As we saw in lecture, there are a number 
of little mini “proof templates” that you can use to focus your efforts. Here, we’re trying to 
prove a universally-quantified statement (“for any sets … where …”), and as you saw in class, 
there’s a nice template for starting this one off: 

Theorem: For any sets A, B, C, D, and E where A ⊆ B ∪ C, B ⊆ D, and C ⊆ E, we have A ⊆ D ∪ E. 

Proof: Consider any sets A, B, C, D, and E where A ⊆ B ∪ C, B ⊆ D, and C ⊆ E. We will prove that A ⊆ D ∪ E. 
[ the rest of the proof goes here. ] 

In other words, we’re beginning with a ton of little assumptions, and we have a single goal 
that we need to prove (namely, A ⊆ D ∪ E). So now the question is how we go about doing that. 

Notice that, up to this point, we haven’t actually needed to know anything about sets or set 
theory. We could just as easily have replaced the word “set” with “pizkwat,” the symbol “⊆” 
with the word “gloobah,” and the symbol ∪ with “zyzzyzyplyx,” and the proof setup would 
have looked the same. (Or rather, it would have had the same structure, but looked much sil-
lier.) To make actual progress here, we need to know how to reason about subsets, unions, 
and the like. So let’s see how to do that. 
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Reasoning About Subsets 
The subset-of relation ⊆ is one of the most fundamental relations we’ll explore in set theory. 
As a reminder, formally speaking, we say that S ⊆ T if every element of S is also an element of 
T. If you’ll notice, the statement “every element of S is also an element of T” is a universal 
statement – it says that for each object of some type (“every element of S”) has some other 
property (“is also an element of T.”) And as you saw on Wednesday, there’s a nice technique 
for proving universal statements that involves making arbitrary choices. 

Putting this together, we have the following: 

☞      To prove S ⊆ T, pick an arbitrary x ∈ S, then prove that x ∈ T.      ☜ 

Using this template, we can continue the proof that we set up on the previous page. When we 
left off, we said we needed to prove A ⊆ D ∪ E. And hey! We just developed a template for that. 
Let’s use it! 

Theorem: If A ⊆ B ∪ C, B ⊆ D, and C ⊆ E, then A ⊆ D ∪ E. 

Proof: Consider any sets A, B, C, D, and E where A ⊆ B ∪ C, B ⊆ D, and C ⊆ E. We will prove that A ⊆ D ∪ E. 
To do so, pick an arbitrary x ∈ A. We will prove that x ∈ D ∪ E. [ the rest of the proof goes here. ] 

An important detail here: this proof introduces a new variable x. The statement of the the-
orem purely relates A, B, C, D, and E to one another. It says nothing whatsoever about anything 
named x. Think back to the discussion of atomic theory and steel. Asking why steel is so strong 
requires you to steer the conversation away from “steel in general” and toward “individual 
atoms inside of a piece of steel.” The original question – why is steel strong? – doesn’t concern 
individual steel atoms, but answering that question requires you to think about things that 
way. Similarly, although there is no variable x in the original theorem, proving that theorem 
requires us to reason about elements of the sets. So just as atomic theory means “any discus-
sion of fundamental properties of matter probably requires you to talk about atoms,” the ele-
mental theory of sets means “any discussion of sets will probably require you to introduce 
new variables to talk about individual elements.” 

How do we proceed from here? It’s not immediately clear, but we can use some of the infor-
mation we have. For example, we know that A ⊆ B ∪ C, and we know that x ∈ A. We can com-
bine these pieces of information together given the following principle: 

☞      If you know x ∈ S and S ⊆ T, you can conclude x ∈ T.      ☜ 

This follows from how subsets are defined. If S ⊆ T, then every element of S is an element of 
T, and so in particular because x is an element of S, we can say that x is an element of T. We 
can put that into practice here: 

Theorem: If A ⊆ B ∪ C, B ⊆ D, and C ⊆ E, then A ⊆ D ∪ E. 

Proof: Consider any sets A, B, C, D, and E where A ⊆ B ∪ C, B ⊆ D, and C ⊆ E. We will prove that A ⊆ D ∪ E. 
To do so, pick an arbitrary x ∈ A. We will prove that x ∈ D ∪ E. 

Since we know x ∈ A and A ⊆ B ∪ C, we see that x ∈ B ∪ C. [ the rest of the proof goes here. ] 
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A detail to point out before we move on: notice that the way that we interact with the ⊆ rela-
tion in a proof differs based on whether we are proving that one set is a subset of another or 
whether we are using the fact that one set is a subset of another. That will be unifying theme 
throughout the entire quarter, and you’ll see this come up in the rest of this handout. In the 
first paragraph, we set up a proof that A ⊆ D ∪ E by picking an arbitrary x ∈ A. In the second, 
we used the fact that A ⊆ B ∪ C to conclude that x ∈ B ∪ C. Proving that one set is a subset of 
another introduces a new variable; using the fact that one set is a subset of the other lets us 
conclude new things about existing variables. 
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Reasoning About Set Combinations 
You probably have a good intuition for unions, intersections, and the like from your lived ex-
perience. The union of the set of all your TAs and your classmates represents the set of people 
you’re mostly like to interact with in a given course. The intersection of the set of people you 
admire and the set of people who admire you represents the set of people you probably should 
consider becoming friends with. And so on. 

But in the elemental theory of sets, we have to ask – what exactly makes up the sets S ∪ T, S ∩ 
T, S Δ T, etc.? After all, sets are formally defined by their elements. And for that, we need these 
definitions: 

S ∪ T = { x | x ∈ S or x ∈ T (or both) } S ∩ T = { x | x ∈ S and x ∈ T } 

S – T = { x | x ∈ S and x ∉ T } S Δ T = { x | either x ∈ S and x ∉ T, or x ∉ S and x ∈ T } 

These are the definitions of these terms. It’s good to know these definitions when you’re think-
ing about how these sets operate. But in the context of proofwriting, you’ll likely need to use 
these definitions in the following way: 

 
 

☞ 

If you know x ∈ S ∪ T, you can conclude x ∈ S or x ∈ T. 

If you know x ∈ S ∩ T, you can conclude x ∈ S and x ∈ T. 

If you know x ∈ S – T, you can conclude x ∈ S and x ∉ T. 

If you know x ∈ S Δ T, you can conclude either x ∈ S and x ∉ T, or x ∉ S and x ∈ 
T. 

 
 

☜ 

Let’s jump back to the proof we’re working through. We know that x ∈ B ∪ C. Given what we 
just saw above, we can use that to conclude that x ∈ B or x ∈ C. Let’s use that to our advantage: 

Theorem: If A ⊆ B ∪ C, B ⊆ D, and C ⊆ E, then A ⊆ D ∪ E. 

Proof: Consider any sets A, B, C, D, and E where A ⊆ B ∪ C, B ⊆ D, and C ⊆ E. We will prove that A ⊆ D ∪ E. 
To do so, pick an arbitrary x ∈ A. We will prove that x ∈ D ∪ E. 

Since we know x ∈ A and A ⊆ B ∪ C, we see that x ∈ B ∪ C. This in turn tells us that x ∈ B or x ∈ C. [ the rest 
of the proof goes here. ] 

We’re making some progress here, because this lets us use some of the facts from our proof 
setup that we haven’t touched yet. Specifically, we’ve been holding onto the fact that B ⊆ D and 
that C ⊆ E, and here we’re confronted with the fact that either x ∈ B or x ∈ C. Using what we 
saw in the previous section about subsets, that means that we can potentially make a lot more 
progress here. The challenge is that we can’t say for certain whether x ∈ B or x ∈ C – that might 
depend on x, B, and C. But that’s not a problem – that’s the sort of thing a proof by cases was 
meant for! 

Here’s how we might continue from the previous section using both a proof by cases and our 
knowledge of how B, C, D, and E relate: 
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Theorem: If A ⊆ B ∪ C, B ⊆ D, and C ⊆ E, then A ⊆ D ∪ E. 

Proof: Consider any sets A, B, C, D, and E where A ⊆ B ∪ C, B ⊆ D, and C ⊆ E. We will prove that A ⊆ D ∪ E. 
To do so, pick an arbitrary x ∈ A. We will prove that x ∈ D ∪ E. 

Since we know x ∈ A and A ⊆ B ∪ C, we see that x ∈ B ∪ C. This in turn tells us that x ∈ B or x ∈ C. We will 
therefore proceed by cases: 

Case 1: x ∈ B. Then since x ∈ B and B ⊆ D, we see that x ∈ D. 

Case 2: x ∈ C. Then since x ∈ C and C ⊆ E, we see that x ∈ E. 

[ the rest of the proof goes here. ] 

This is looking a lot better. 

Our ultimate goal is to prove that x ∈ D ∪ E. And based on where we are now, it seems like that 
goal is in sight! We know that x ∈ D or that x ∈ E. And intuitively, that seems like that should 
be enough to conclude that x ∈ D ∪ E, since, after all, D ∪ E is what you get when you take all 
the elements of D and all the elements of E and combine them together. 

On the previous page, we saw how you could use the formal definitions of the set combination 
operators to go from knowledge that x ∈ S ∪ T to the conclusion that x ∈ S or x ∈ T. In other 
words, if we already happen to know that an object is an element of a set union, we can use 
that to learn something about how that object connects with the individual sets that make up 
that union. But what about the other direction? What do we have to do to show that an object 
is an element of the union of two sets? For that, we can use this handy table: 

 
 

☞ 

To prove x ∈ S ∪ T, prove that x ∈ S or that x ∈ T. 

To prove x ∈ S ∩ T, prove that x ∈ S and x ∈ T. 

To prove x ∈ S – T, prove that x ∈ S and x ∉ T. 

To prove that x ∈ S Δ T, prove that x ∈ S and x ∉ T, or that x ∉ S and x ∈ T. 

 
 

☜ 

With this in mind, we can finish our proof! In each case, we learn that x belongs to one of the 
D or E, and so we can conclude that it always belongs to D ∪ E. 

Theorem: If A ⊆ B ∪ C, B ⊆ D, and C ⊆ E, then A ⊆ D ∪ E. 

Proof: Consider any sets A, B, C, D, and E where A ⊆ B ∪ C, B ⊆ D, and C ⊆ E. We will prove that A ⊆ D ∪ E. 
To do so, pick an arbitrary x ∈ A. We will prove that x ∈ D ∪ E. 

Since we know x ∈ A and A ⊆ B ∪ C, we see that x ∈ B ∪ C. This in turn tells us that x ∈ B or x ∈ C. We will 
therefore proceed by cases: 

Case 1: x ∈ B. Then since x ∈ B and B ⊆ D, we see that x ∈ D. 

Case 2: x ∈ C. Then since x ∈ C and C ⊆ E, we see that x ∈ E. 

Collectively, these cases show that x ∈ D or that x ∈ E. Therefore, we see that x ∈ D ∪ E, as required. ■  
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And that’s a wrap! Now, look back over this proof. Notice that this proof very heavily uses the 
elemental perspective on sets. We don’t talk about how these sets, in general, relate to one 
another. We focused on a single element x, went with x on a magical journey, and ended up 
reaching our desired conclusion. 
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Reasoning About Set Equality 
What does it mean for two sets to be equal? This is addressed by the fancy-sounding axiom of 
extensionality, a term you are totally welcome to toss around at cocktail parties, which says 
the following: 

☞     Two sets S and T are equal (S = T) if S ⊆ T and T ⊆ S     ☜ 

This definition of set equality lets you make the following conclusions in the case where you 
know two sets are equal to one another: 

☞ 
        If S = T and x ∈ S, you can conclude that x ∈ T.         

        If S = T and x ∉ S, you can conclude that x ∉ T.        
☜ 

The definition of set equality gives us the following route for proving two sets are equal: 

☞     To prove that S = T, prove that S ⊆ T and T ⊆ S.     ☜ 

This approach for proving that two sets are equal is sometimes called a proof by double in-
clusion, though we generally won’t refer to it by that name. You are welcome to toss that 
around at cocktail parties as well, though, if you so choose. 

Another consequence of this theorem is the following conclusion that you can also draw from 
two sets being equal to one another: 

☞     If S = T, you can conclude that S ⊆ T and T ⊆ S.     ☜ 

This comes up every now and then, though it’s much more common to use the opposite direc-
tion of this theorem to prove that S = T via S ⊆ T and T ⊆ S. 

 

Reasoning About Power Sets 
The power set is a strange creature. It’s a set made of other sets, it’s a set that converts subset-
of to element-of, and it’s a set that’s used to show that different magnitudes of infinity exist. 
The good news is that, provided that you go slowly and methodically and don’t skip any steps, 
it’s not too hard to manipulate power sets in proofs. 

First, let’s recap the formal definition of the power set. The power set of a set S is the set of all 
subsets of S: 

℘(S) = { T | T ⊆ S } 

If you haven’t already done so, take a minute to read over that set-builder notation and to see 
if you can convince yourself why it says symbolically what we described in plain English right 
above it. 

The above definition is wonderfully useful. For example, if you want to show that an object 
belongs to ℘(S), you need to show that that object obeys the set-builder notation. Specifically: 

☞     To prove that T ∈ ℘(S), prove that T ⊆ S.     ☜ 

You can also run this definition the other way: 

☞     If you know T ∈ ℘(S), you can conclude T ⊆ S.     ☜ 
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A Second Example 
Now that you’ve seen at a high level how you can reason about set equality and power sets, 
let’s work through an example that will employ all of those techniques. Specifically, let’s work 
through this example, which comes from the Winter 2018 midterm exam: 

Theorem: For any sets A and B, we have A ∩ B = A if and only if A ∈ ℘(B). 

This theorem touches on two concepts about sets we haven’t explored yet: power sets and set 
equality. It’s also a biconditional, which means that it’s two proofs for the price of one! 

As before, I’ll invite you to think about why, exactly, this result is true. This would be a great 
time to draw some pictures and to try out examples. See if you can build an intuition for what’s 
going on here. (Having trouble? Ask a question about it on Piazza!) 

Let’s take a minute to think about how we’d formally set up a proof of this result. Again, even 
if you don’t have a good intuition for where we’re going or why this is true, it can still be really 
helpful to, at a bare minimum, set the proof up so that you see what exactly it is that we’ll need 
to demonstrate. Following the lead from lecture, since this is a biconditional statement, we’ll 
set the proof up as two separate halves that will work in tandem with one another. 

Theorem: For any sets A and B, we have A ∩ B = A if and only if A ∈ ℘(B). 

Proof: Let A and B be arbitrary sets. We will prove both directions of implication. 

(⇒) First, assume that A ∩ B = A. We will prove that A ∈ ℘(B). [ the rest of this proof goes here. ] 

(⇐) Next, let’s assume that A ∈ ℘(B). We will prove that A ∩ B = A. [ the rest of this proof goes here. ] 

If you aren’t familiar with the use of these double arrow markers at the start of each section 
of the proof (the ⇐ and ⇒ symbols), they’re just a nice way to signal to the reader where each 
section of the biconditional proof begins. Although we generally discourage using symbols 
like these, this is a fairly common convention and makes the organization of the proof much 
simpler. We could have alternatively split this proof apart into a pair of lemmas (smaller 
proofs that build into bigger ones), one for each direction of implication, but we figured that 
this would be a slightly easier way to do things. 

To make progress at this point, we’ll need to use our specific knowledge about how to reason 
about set equality and power sets. For example, in the first branch of this proof, we need to 
prove that A ∩ B = A, and in the second branch we’ll need to prove that A ∈ ℘(B). What do we 
need to do to prove these statements? Well, looking back at the preceding page, we can see 
that 

• we can prove two sets are equal by showing that they’re each subsets of one another, 
and 

• we can prove that an object belongs to ℘(S) by showing that it’s a subset of S. 

We can use that to expand the above proof, as is shown here: 

Theorem: For any sets A and B, we have A ∩ B = A if and only if A ∈ ℘(B). 

Proof: Let A and B be arbitrary sets. We will prove both directions of implication. 
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(⇒) First, let’s assume that A ∩ B = A. We will prove that A ∈ ℘(B). To do so, we’ll prove that A ⊆ B. [ the rest 
of this proof goes here. ] 

(⇐) Next, assume that A ∈ ℘(B). We will prove that A ∩ B = A. To do so, we’ll prove that A ∩ B ⊆ A and that 

A ⊆ A ∩ B. [ the rest of this proof goes here. ] 

We can work on either branch of this proof at this point, but for simplicity’s sake, let’s start 
with that top branch. Here, we’re assuming that A ∩ B = A, and our goal is to prove that A ⊆ B. 
So let’s ask – how exactly do you prove that A ⊆ B? That’s something we saw earlier – you pick 
an arbitrary element x ∈ A and then prove that x ∈ B. So let’s add that in: 

Theorem: For any sets A and B, we have A ∩ B = A if and only if A ∈ ℘(B). 

Proof: Let A and B be arbitrary sets. We will prove both directions of implication. 

(⇒) First, let’s assume that A ∩ B = A. We will prove that A ∈ ℘(B). To do so, we’ll prove that A ⊆ B by picking 
an arbitrary x ∈ A and showing that x ∈ B. [ the rest of this proof goes here. ] 

(⇐) Next, assume that A ∈ ℘(B). We will prove that A ∩ B = A. To do so, we’ll prove that A ∩ B ⊆ A and that 

A ⊆ A ∩ B. [ the rest of this proof goes here. ] 

The question now is how to actually establish this. We’ve gotten to this point purely by ex-
panding out definitions and following templates. Here, we need to pause and see if we can find 
some connection. 

In this top branch, we’re operating under the assumption that A ∩ B = A, and that’s something 
we haven’t relied on yet. So maybe that’s a good place to look – especially since there doesn’t 
seem to be anything else to really do here. 

Now, notice that in this section we are assuming that A ∩ B = A, so we don’t need to prove A ∩ 
B = A. Instead, we can rely on the fact that A ∩ B = A. That means we could bring in any of the 
facts about set equality that we saw earlier: that A ∩ B ⊆ A, that A ⊆ A ∩ B, that any x ∈ A ∩ B 
also satisfies x ∈ A, or that any x ∈ A satisfies x ∈ A ∩ B. How do we decide which of these paths 
to go down? Well, a priori, there’s no reason to suspect that any one of them would pan out 
over the others. That’s just a bit of trial and error. However, we do know that we’re in a posi-
tion where we have an x ∈ A that we’d like to work with (namely, our goal in this section is to 
get x ∈ B), so perhaps we should use the fact that x ∈ A means that we’ll have x ∈ A ∩ B. 

Let’s suppose that we do decide to do this. What will that buy us? Well, if we look back to how 
set intersections work, we’ll see that if x ∈ A ∩ B we can conclude that x ∈ A and x ∈ B. And 
boy, is that useful! After all, we ultimately wanted to show that x ∈ B. 

So that means that we’d expect to take two steps here. First, we’ll use the fact that A = A ∩ B, 
plus our knowledge that x ∈ A, to get x ∈ A ∩ B. From there, we’ll expand x ∈ A ∩ B into x ∈ A 
and x ∈ B, and then we just need to wrap things up. 

Here’s what this looks like: 

Theorem: For any sets A and B, we have A ∩ B = A if and only if A ∈ ℘(B). 

Proof: Let A and B be arbitrary sets. We will prove both directions of implication. 
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(⇒) First, let’s assume that A ∩ B = A. We will prove that A ∈ ℘(B). To do so, we’ll prove that A ⊆ B by picking 
an arbitrary x ∈ A and showing that x ∈ B. Starting with x ∈ A, we’ll use the fact that A = A ∩ B to conclude 
that x ∈ A ∩ B. Then, since x ∈ A ∩ B, we learn that x ∈ A and x ∈ B. In particular, that means that x ∈ B, which 
is what we needed to show. 

(⇐) Next, assume that A ∈ ℘(B). We will prove that A ∩ B = A. To do so, we’ll prove that A ∩ B ⊆ A and that 

A ⊆ A ∩ B. [ the rest of this proof goes here. ] 

There’s a lot going on in here, so I strongly recommend that you stop reading and go over that 
new section slowly and carefully to make sure everything seems well-motivated. Not sure 
what a certain step is doing? No worries! Go ask on Piazza. Once you’re satisfied that we’ve 
indeed proved one of the two directions of implication, carry on to the next section, where 
we’ll work on the other. 

For this other direction of implication, we find ourselves tasked with proving two separate 
statements: first, that A ∩ B ⊆ A, and second, that A ⊆ A ∩ B. Let’s take each of these on indi-
vidually. 
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We’ll begin by proving that A ∩ B ⊆ A. You might notice that this statement is true about any 
sets A and B. If you’re not sure why this is, again, draw a Venn diagram. This one has a pretty 
intuition. But remember – it’s just an intuition, and to formalize this proof we’re going to need 
to use the elemental theory of sets and proceed one element at a time. Here’s one way we can 
do this: 

Theorem: For any sets A and B, we have A ∩ B = A if and only if A ∈ ℘(B). 

Proof: Let A and B be arbitrary sets. We will prove both directions of implication. 

(⇒) First, let’s assume that A ∩ B = A. We will prove that A ∈ ℘(B). To do so, we’ll prove that A ⊆ B by picking 
an arbitrary x ∈ A and showing that x ∈ B. Starting with x ∈ A, we’ll use the fact that A = A ∩ B to conclude 
that x ∈ A ∩ B. Then, since x ∈ A ∩ B, we learn that x ∈ A and x ∈ B. In particular, that means that x ∈ B, which 
is what we needed to show. 

(⇐) Next, assume that A ∈ ℘(B). We will prove that A ∩ B = A. To do so, we’ll prove that A ∩ B ⊆ A and that 

A ⊆ A ∩ B. 

First, we’ll prove that A ∩ B ⊆ A. To do so, pick any x ∈ A ∩ B. We will prove that x ∈ A. To do so, notice that 

since x ∈ A ∩ B, we have x ∈ A and x ∈ B. That specifically means that x ∈ A, as needed. 

Next, we’ll prove that A ⊆ A ∩ B. [ the rest of this proof goes here. ] 

Take a look over this part of the proof. Notice that everything you’re seeing there, from the 
setup of the proof (showing that one set is a subset of another), to the way in which we expand 
out definitions (here, what it means for x ∈ A ∩ B to be true), follows the exact same set of 
rules we’ve been playing with the whole time. This is a good thing – it means that once you’ve 
gotten the patterns down, these sorts of arguments will become a lot easier to work through! 

So now we’re left with proving A ⊆ A ∩ B. This statement is not true in general. For example, 
if I pick A to be the set ℕ and B to be the set Ø, then A ⊈ A ∩ B. Oh no! That’s not good. But 
fortunately, that’s okay here. Look back at where we are in the proof. We’re in the proof of the 
reverse direction of implication, which means that we’re operating under the assumption that 
A ∈ ℘(B). As a result, we’re not working with just any old pair of sets A and B. We’re working 
with sets where A ∈ ℘(B). 

… which means, what, exactly? Well, look back at the section about power sets. Since A ∈ ℘(B), 
we know that A ⊆ B. And with that in mind, look back at A ⊆ A ∩ B. Let’s think about this 
intuitively, for the moment. If you take A and intersect it with B, since A ⊆ B, you won’t “filter 
out” any elements of B. There’s nothing in A that isn’t also in B. So in that sense, the statement 
A ⊆ A ∩ B is a little bit more intuitive. Everything in A (the left-hand side) is still going to be 
there in A ∩ B (the right-hand side). 

But of course, that’s not the end of the story. That’s very much a high-level, intuitive argument 
as to why A ⊆ A ∩ B has to hold here, and we’re looking for an elemental set theory explana-
tion. That means that we need to do what we’ve done a bunch of times before, which is to 
appeal to the formal definitions. We’ll need to pick an arbitrary x ∈ A, use the fact that A ⊆ B 
to place x ∈ B, and from there recognize that because both x ∈ A and x ∈ B that we’ve got x ∈ A 
∩ B. Is that a lot of details to check? Yes. But is it difficult? Not really, once you get used to it. 
Pretty much everything I described here follows from the specific rules about what you can 
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conclude from different properties of sets holding and what you need to prove in order to 
show various results about sets. 

Converting that sketch of an argument into a formal proof gives us this, the final version of the 
proof: 
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Theorem: For any sets A and B, we have A ∩ B = A if and only if A ∈ ℘(B). 

Proof: Let A and B be arbitrary sets. We will prove both directions of implication. 

(⇒) First, let’s assume that A ∩ B = A. We will prove that A ∈ ℘(B). To do so, we’ll prove that A ⊆ B by picking 
an arbitrary x ∈ A and showing that x ∈ B. Starting with x ∈ A, we’ll use the fact that A = A ∩ B to conclude 
that x ∈ A ∩ B. Then, since x ∈ A ∩ B, we learn that x ∈ A and x ∈ B. In particular, that means that x ∈ B, which 
is what we needed to show. 

(⇐) Next, assume that A ∈ ℘(B). We will prove that A ∩ B = A. To do so, we’ll prove that A ∩ B ⊆ A and that 

A ⊆ A ∩ B. 

First, we’ll prove that A ∩ B ⊆ A. To do so, pick any x ∈ A ∩ B. We will prove that x ∈ A. To do so, notice that 
since x ∈ A ∩ B, we have x ∈ A and x ∈ B. That specifically means that x ∈ A, as needed. 

Next, we’ll prove that A ⊆ A ∩ B. To do so, consider any x ∈ A; we’ll show that x ∈ A ∩ B. Earlier, we assumed 
that A ∈ ℘(B). This means that A ⊆ B, and from this and the fact that x ∈ A we can conclude that x ∈ B. 
Collectively, that means we’ve established x ∈ A and x ∈ B, so we see that x ∈ A ∩ B, which is what we needed 
to show. ■  

And there you go! One complete proof of a theorem about sets. 

This particular proof is sneaky in that the statement of the proof is quite short, yet, if you think 
about it, there are three separate statements that all need to be proved independently. First, 
there’s the implication that if A ∩ B = A, then A ∈ ℘(B). Then, there’s the proof that if A and B 
are sets, then A ∩ B ⊆ A. Finally, there’s the proof that if A ∈ ℘(B), then A ⊆ A ∩ B. The only 
way we could have known that we needed to do this was to go slowly, methodically, and dili-
gently through the structure of the proof. 

You’ve seen the evolution of this proof, starting purely with a statement of a theorem and end-
ing with all the parts filled in. But imagine we hadn’t done that, and that instead we just tossed 
this proof at you. It would have been difficult to make heads or tails of what the proof was 
doing, since you’re still getting used to writing proofs. You’d have to ask why each step was 
justified, why there were so many pieces to show, why certain parts weren’t “obvious,” etc. 
Our hope was that by having you read through this longer discussion, you can see where each 
piece of the overall whole comes from, what general patterns we were following, what tem-
plates exist for you to build off of, and how much of this larger picture follows from simpler 
patterns chained together. 

In that sense, we hope that reading over this discussion reminds you of learning how to pro-
gram. Jumping into a full program that solves a problem while you’re still learning to code can 
be extremely disorienting. You’d look at each piece of the program, trying to decipher what on 
earth it did and how it fit into the overall whole. But in the same way, if you had seen how that 
program was written, what the thought process was behind each individual piece, and how 
much of what was written followed from standard techniques, you’d have a better under-
standing of how everything fit together. 

We invite you to look back at this proof when you’re studying for the CS103 final exam. How 
hard was it to read? Did it make sense? Chances are, your answers will be “that wasn’t too 
bad” and “yep, those are all standard techniques.” In the meantime, practice working with 
these templates and combining them in different ways. Dissect the proofs we did in lecture to 
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see how they adhere to these conventions. And take on the problems from this week’s prob-
lem set, keeping these techniques in mind. You’ll get this. You can do this. Best of luck! 


